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ABSTRACT

This paper deals with an approach to Automatic Lan-
guage Identification using only prosodic modeling. The
actual approach for language identification focuses
mainly on phonotactics because it gives the best re-
sults. We propose here to evaluate the relevance of
prosodic information for language identification with
read studio recording (previous experiment [1]) and
spontaneous telephone speech. For read speech, ex-
periments were performed on the five languages of the
MULTEXT database [2]. On the MULTEXT corpus,
our prosodic system achieved an identification rate of
79 % on the five languages discrimination task. For
spontaneous speech, experiments are made on the ten
languages of the OGI Multilingual telephone speech
corpus [3]. On the OGI MLTS corpus, the results are
given for languages pair discrimination tasks, and are
compared with results from [4]. As a conclusion, if
our prosodic system achieves good performance on read
speech, it might not take into account the complexity
of spontaneous speech prosody.

1. INTRODUCTION

During the last decade, the request for Automatic
Language Identification (ALI) systems arose in sev-
eral fields of application, and especially in Computer-
Assisted Communication (Emergency Service, etc.)
and Multilingual Man-Computer Interfaces (Interac-
tive Information Terminal, etc.). More recently,
content-based indexing of multimedia or audio data
provided a new topic in which ALI systems are use-
ful. However, current ALI systems are still not effi-
cient enough to be used in a commercial framework. In
this paper, we investigate the efficiency of prosodic fea-
tures for language identification, as they are known to
carry a substantial part of the language identity (Sec-
tion 2). However, modeling prosody is still an open
problem, mostly because of the suprasegmental nature
of the prosodic features. To address this problem, an
algorithm of language-independent extraction of rhyth-

mic features is proposed and applied to model rhythm
(Section 3). Meanwhile, an other algorithm, based
on the automatically extracted fundamental frequency
contours, computes statistics on these outlines in order
to model each language’s intonation (Section 3). The
experiments and results are described in section 4.

2. MOTIVATIONS

2.1. Classifying languages according to rhythm

Languages can be clustered in main rhythmic classes.
According to the literature, Spanish is syllable-timed
whereas English and German are stress-timed, and
Japanese is mora-timed. These categories emerged
from the theory of isochrony introduced by Pike and
developed by Abercrombie [5]. However, more recent
works provide an alternative framework in which these
categories are replaced by a continuum [6]. Rhythmic
differences between languages are then mostly related
to their syllable structure and the presence (or absence)
of vowel reduction. The controversies on the status of
rhythm in world languages illustrate dramatically the
difficulty to segment speech into correct rhythmic units.
Even if correlates between speech signal and linguistic
rhythm exist, reaching a relevant representation seems
to be difficult. We develop here a statistical approach,
first introduced in [7] and now improved by considering
stress features (Fundamental Frequency and Energy).
This approach is based on a Gaussian modeling of the
different rhythm units automatically extracted from a
rhythmic segmentation in the languages.

2.2. Classifying languages according to intona-
tion

Intonation can also be seen as an efficient cues for
discriminating among languages. There is a linguis-
tic grouping between languages using tone as a lexi-
cal marker and those that do not. For example, in
Mandarin Chinese or Vietnamese, the use of changes
in the tones assigned to syllables distinguish between



lexical items. In English, stress is used at the sentence
level and is used to determine the kind of the sentence,
whether its declarative, interrogative, etc.

3. DESCRIPTION OF THE SYSTEM

The language identification system is based on the seg-
mentation of the speech signal in “pseudo-syllable”. A
pseudo-syllable is a language independent unit that is
near the definition of the syllable and that can be au-
tomatically extracted. The extraction process of this
unit is describe in 3.1, prosodic features extraction de-
rived from this pseudo-syllable in 3.2 and the language
identification task in 3.3. A synoptic of the system is
displayed on figure 1.
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Figure 1. Overview of the system.

3.1. Pseudo-syllable unit

Syllable may be a first-rate candidate for rhythm mod-
eling. Unfortunately, segmenting speech in syllables is
typically a language-specific mechanism and thus no
language independent algorithm can be derived. For
this reason, we introduced in [7] the notion of pseudo-
syllables derived from the most frequent syllable struc-
ture in the world, namely the CV structure [8].

The pseudo-syllable generation necessitates the fol-
lowing pre-processing steps:

• A language-independent speech segmentation al-
gorithm [9] of the signal. This algorithm is based

on the modeling of the speech signal with an au-
toregressive model. The changes in the coeffi-
cients of the autoregressive model are detected
according to a distance measurement. The re-
sults are short and long segments corresponding
to transient and steady parts of the signal.

• A language-independent vowel detection algo-
rithm (based on the Energy) [10]

• A speech activity detection algorithm that pro-
duces Silence, Non Vowel or Vowel labels on the
detected segments. This algorithm, based on a
spectral analysis of the signal, is described in [11].
It is applied in a language and speaker indepen-
dent way without any manual adaptation phase.

A pseudo-syllable is articulated around the vocalic seg-
ment and consists in a CnV pattern: n is an integer
(that may be zero) and V may result from the merg-
ing of consecutive vowel segments. See an example of
extraction in figure 2.

3.2. Features extraction

Rhythmic and fundamental frequency statistics are ex-
tracted from each pseudo-syllable (Figure 2).
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Figure 2. Extraction of prosodic features after the
Pseudo-Syllable segmentation.

3.2.1. Rhythmic parameters

Three parameters are computed, corresponding respec-
tively to the total consonant cluster duration, the total
vowel duration and the complexity of the consonan-
tal cluster. For example, the description for a .CCV.
pseudo-sequence is:

P.CCV. = {DC DV NC}



where DC is the total duration of the consonantal seg-
ments, DV is the duration of the vowel segment and
NC is the number of segments in the consonantal clus-
ter (here, NC = 2). Such a basic rhythmic parsing is
obviously limited, but provides a framework to model
rhythm that requires no knowledge on the language
rhythmic structure

3.2.2. Fundamental frequency parameters

The fundamental frequency outlines are used to com-
pute statistics inside of the same pseudo-syllable fron-
tiers than those used for rhythm modeling, in order to
model intonation on each pseudo-syllable. We choose
to compute statistics until 4th order (mean, standard
deviation, skewness and kurtosis) and a measurement
of the accent location (maximum f0 location regard-
ing to vocalic onset) and the normalized fundamental
frequency bandwidth on each syllable.

3.3. Language identification system

Let be L = {L1, L2} the set of language to identify.
The problem is to find the most likely language L∗ in
the set L. Let be Oπ = {π1, π2, ..., πnp} the sequence
of prosodic informations extracted from each pseudo-
syllable.In a Bayesian approach, L∗ is defined by the
following equation:

L∗ = arg max
1≤i≤2

(Pr(Li|Oπ)) = arg max
1≤i≤NL

(Pr(Oπ|Li))

(1)
using Bayes rule and considering that a priori prob-

abilities are equal, and Pr(Oπ|Li) is obtained with the
prosodic modeling.

The prosodic modeling uses Gaussian Mixture Mod-
els (GMM) on a set of 9 parameters extracted from
each pseudo-syllable: Dc, Dv, Nc, F0 mean, F0 vari-
ance, F0 skewness, F0 kurtosis, the accent location, the
F0 bandwidth. Considering that each pseudo-syllable
is independent gives:

Pr(Oπ|Li) =
np∏

k=1

Pr(πk|Li) (2)

and πk is the vector formed by the 9 prosodic parame-
ters for the pseudo-syllable k.

For each language a GMM is learned to characterize
the πk vector distribution, using EM algorithm with
LBG initialization [12].

Pr(πk|Li) =
Qi∑
j=1

N(µj ,Σj) (3)

4. EXPERIMENTS

4.1. Language identification on read speech

Experiments were previously [1] made on the five
languages of the MULTEXT database [2]: English,
French, German, Italian and Spanish. The tests are
made using 20 seconds read speech utterances. The
identification rate is 79 % (Table 1).

Eng Fre Ger Ita Spa
Eng 62 4 16 11 7
Fre 0 100 0 0 0
Ger 11 1 86 2 0
Ita 10 1 3 62 23
Spa 1 4 0 3 91

Table 1. Results for the language identification task
on the MULTEXT corpus.

4.2. Language identification on spontaneous
speech

Experiments are made on ten languages of the
OGI Multilingual Telephone Speech Corpus (OGI
MLTS) [3]: English, Farsi, French, German, Japanese,
Korean, Mandarin, Spanish, Tamil and Vietnamese.
The tests are made using the 45 seconds spontaneous
speech utterances, and the results are displayed on Ta-
ble 1.

5. DISCUSSION

On the read speech corpus, our system can achieve
good performance (79 % of correct identification on
five languages). The main confusion are between En-
glish and German (both stress timed languages), and
Spanish and Italian.

On the spontaneous speech corpus, the discrimina-
tion is easier to achieve between languages which does
not belong to the same rhythmic and intonation classes:

• English and German, stress-timed languages
which does not use intonation as a lexical marker
are well identified regarding to Japanese (mora-
timed language), Mandarin and Vietnamese
(which use intonation as a lexical marker), and
Korean, Tamil, Farsi. But to discriminate En-
glish and German is not an easy task.

• In the same way, we can see that Mandarin
(which uses intonation as a lexical marker) is dis-
criminated from most of the languages, except
Japanese and Vietnamese.



English German French Spanish Mandarin Vietnamese Japanese Korean Tamil Farsi
English - 59.5 51.5 67.7 75.0 67.7 67.6 79.4 77.4 76.3
German 59.5 - 55.9 59.4 62.2 65.7 65.8 71.4 69.7 71.8
French 51.5 55.9 - 64.3 60.6 58.1 55.9 54.8 60.1 68.6
Spanish 67.7 59.4 64.3 - 80.6 62.1 62.5 75.9 65.4 66.7

Mandarin 75.0 62.2 60.6 80.6 - 50.0 50.0 73.5 74.2 76.3
Vietnamese 67.7 65.7 58.1 62.1 50.0 - 68.6 56.2 71.4 66.7
Japanese 67.6 65.8 55.9 62.5 54.1 68.6 - 65.7 59.4 66.7
Korean 79.4 71.4 54.8 75.9 73.5 56.2 65.7 - 62.1 75.0
Tamil 77.4 69.7 60.1 65.4 74.2 71.4 59.4 62.1 - 69.7
Farsi 76.3 71.8 68.6 66.7 76.3 66.7 66.7 75.0 69.7 -

Table 2. Results for the language pair identification task on ten languages.

As a comparison, we can cite [4] in which is described
an language pair identification task on the same cor-
pus, but using different features: the amplitude enve-
lope modulation and a feature related to the funda-
mental frequency. The results we obtain are mainly
above those obtained by Cummins et al. We can assess
that our features take into account more information,
especially when we have to discriminate stress-timed
languages (as English and German) versus mora-timed
languages which uses intonation as a lexical marker
(like Japanese). But our discrimination performs worse
when the task is to identify languages belonging to the
same intonation family.

As a conclusion, our system can perform good per-
formance on a read speech corpus, but we will have to
develop more accurate tools in order to model the spon-
taneous speech prosody which seems to be too complex
and with too much speaker variability for our features.
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