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Abstract

Making a pattern recognition decision with the
maximum-likelihood rule is a particular case of the risk-
based Bayesian decision rule which is simplified when the
loss function is zero–one symmetrical and classes are
equally a priori probable.  In the case the recognition
system is composed of several experts, we can take into
account their estimated performance at the class level as
a key heuristic-like factor to weight the loss function and
drive the recognition process while fusing their decisions.
Such indices are formally computed by applying the
Discriminant Factor Analysis method. The experiments
are carried out in the automatic language identification
domain with a system composed of several identification
experts. Fusion of expert decisions is achieved by
building statistical classifiers.

1. Introduction

Automatic Language Identification (ALI) systems can
be composed of several experts or primary systems, also
known as sources of decision information, whose aim is to
identify as soon as possible the language in which an
utterance has been pronounced. The architecture of an
ALI expert can be based on the extraction of Acoustic [7],
Phonotactic [10] or Prosodic [9] features of languages.

An ALI system faces the problem of fusing, in a
suitable way, the identification decisions issued from
experts. Most current fusion techniques are rather
empirical (average, addition, multiplication, etc.) whose
weighted versions take into account heuristic-like
information about the performance of experts by applying
estimated confidence indicators [8] to expert decisions.
Good performance is often  obtained though [4]. So, great
efforts have started to be deployed to try to formally
justify such techniques [2] [5].

We propose an original way of: a) making risk-based
fusion decisions by weighting the loss function with
performance confidence indices; and b) formally
computing performance confidence indices, at the expert
and class levels, by extracting language discriminant

information in processing a development speech corpus,
applying the Discriminant Factor Analysis (DFA) method
in the decision score field, and using the DFA projection
to obtain the confusion matrix.

At least two kinds of fusion approaches may be studied
along with these confidence indices: empirical and
statistical fusion. Thus, in section 2 we explain how to
compute the performance confidence indices. In section 3,
we describe the fusion approaches. The decision making
process is covered in section 4.  Experiments are treated
in section 5.

2. Performance Confidence Indices

ALI experts accept a speech utterance called the
observation, as input, and provide the class (language)
decision as output, after computing language score values;
mostly a statistical model is used and the language score is
the language likelihood; so that the experts  handle a
vector of language likelihood values. Given M languages
to identify, Li, 1≤i≤M, and N experts, sj, 1≤j≤N, we obtain for
each observation, N vectors of M values, each one ranging
from 0 to 1; the higher the value, the more confident the
expert is that the corresponding language is the right one.

This global observation is represented as a score
matrix (Table 1):                   δ = [ dij ]1≤i≤M, 1≤j≤N,
where L = {L1, L2, …, Li, …, LM} is the set of languages
and S = { s1, s2, …, sj, …, sN } the set of experts.

Table 1.  Score matrix δ = [ dij ], 1≤i≤M, 1≤j≤N.

Estimation of expert performance, with a view to
provide the language identification process with heuristic-
like information, can be achieved beforehand by means of
an evaluation phase where the expert is tested on a set of
segments whose language is known.



We split a global speech corpus into three partitions: a
learning corpus X =  {xlearn}, a test corpus Y = {ytest} and a
development corpus   Z = {zdev}. We use the last one to
compute two families of performance indices: the expert
and class indices.

Figure 1.  Computing confidence indices.

We collect the score matrices δ corresponding to the
acoustic segments of the development corpus; each expert
sj, 1≤j≤N, contributes with a score vector corresponding to
an acoustic segment and is represented by column j, in
each score matrix δ. Then, for each expert sj, a matrix Mj

(Figure 1) will be composed of development score vectors
and will correspond to the whole set of acoustic segments.

For each expert sj, we apply the DFA statistical method
to its matrix Mj in order to search for an appropriate
representation space for them and a way of obtaining
performance confidence indices on a correct
discrimination rate basis: we use the M−1 factorial axis
corresponding to the M−1 eigenvalues and project the set
Mj of score vectors into this subspace. In building the
corresponding confusion matrix (Figure 1), the class
confidence indices (βij,1≤i≤M) are directly mapped from the
diagonal values while the expert confidence index must be
computed as an averaged value:

αj=(1/M) ∑i∈[1,M] βij.

3. Fusion Approaches

3.1. Empirical fusion

Linear (addition) and logarithmic (multiplication)
operations are currently employed to empirically fuse
expert decision scores. The estimated performance of each
expert can be taken into account to weight its decision
score in a heuristic-like way.

The concept of weighting by expert estimated
performance matches the one of weighting by the expert
confidence index α described above. Thus, a language is
considered as the identified one if it corresponds to the

greatest value computed with the following weighted
rules:

• Sum L* = arg max i∈[1,M] [ Σj∈[1,N] αj dij ]
• Product L* = arg max i∈[1,M] [ Πj∈[1,N] dij

αj   ]

3.2. Statistical fusion

• The GMM fusion: the occurrence of score matrices
can statistically be modelled by Gaussian Mixture Models
(GMM). One model is learned for each language Li with
the matrices issued from the development set acoustic
segments. We initialize by Vector Quantification and we
apply the iterative Expectation-Maximization algorithm to
optimize Gaussian components.

Let δ be the score matrix corresponding to the acoustic
segment y. The probability that the segment y belongs to
language Li is given by:

P(δ|Li)  =  Σn∈[1,Qi] ωn N(δ,µn,σn)
where n is the Gaussian component number and Qi the
total number of components for the language Li. The most
likely language for matrix δ is the one corresponding to
the maximum likelihood:

L* = arg maxi [ P(δ |Li) ].
• The DFA fusion: As the dimension NxM of the score

matrices space is relatively large, we try to reduce their
dimension and search a better representation space. We
apply the DFA on the set of score matrices obtained from
the development set of acoustic segments. We use the M–1
factorial axis corresponding to the M–1 eigenvalues and
we project the score matrices on this subspace. Besides,
we take advantage of this projection step to implement the
DFA-based classifier by applying on each test-corpus
score matrix the following identification decision rule.

If Dist(δ |Li) represents the Euclidean distance between
the projected matrix δ and the projected gravity center of
language Li, then:

L* = arg mini [Dist(δ |Li)].

4. Risk-based Decisions

Given an identification decision action ai that classifies
the  score matrix δ, corresponding to the acoustic segment
y, as being in one of the languages Lk, the overall risk is
given by [3]:

R   =   ∫ R(a(δ)|δ) p(δ) dδ
where dδ denotes a d-space volume element, and the
integral extends over the entire reference space of δ.

Performance experience of the N experts can be taken
into account to build a particular loss function, that can be
represented as a cube-like matrix, and decomposed into
single matrices (Figure 2) according to its source j (1≤j≤N)  :

Λ(ai|Lk) = {λ1(ai|Lk), λ
2(ai|Lk),…λj(ai|Lk),…λN(ai|Lk)}



Thus, to minimize the overall risk, we compute the
conditional risk:

R(ai|δ)   =   ∑k∈[1,M]Λ(ai|Lk)P(Lk|δ) =
=  ∑k∈[1,M]λ

1(ai|Lk)P(Lk|δ) + λ2(ai|Lk)P(Lk|δ) +
...λj(ai|Lk)P(Lk|δ) + ...λN(ai|Lk)P(Lk|δ)

=  ∑k∈[1,M] (∑j∈[1,N] λ
j(ai|Lk)) P(Lk|δ)

where, ∀i,k =1,2, …,M and ∀j =1,2, …,N, each single
loss function λj(ai|Lk) can hypothetically be defined as
follows:

• Case 1. Wrong actions are to be maximally
penalized:

λj(ai|Lk)           =    0                if :    i = k
λj(ai|Lk)           =    1                if :    i ≠ k

then R(ai|δ) = ∑k≠i (N) P(Lk|δ) = N ( 1 – P(Li|δ) ), and as
the probability of each language is considered equally a
priori probable, then the language likelihood P(δ|Li) can
take the place of the a posteriori probability P(Li|δ) in
building the maximum-likelihood decision rule [3]:

L* = arg maxi∈[1,M]  [ P(δ|Li) ] ……………………. (I)
• Case 2 (depicted in Figure 2). Wrong actions are to

be penalized with the experience value of the expert at the
class level (βkj):

λj(ai|Lk)           =    0                if :    i = k
λj(ai|Lk)           =    βkj              if :    i ≠ k

then R(ai|δ) = ∑k≠i (∑j βkj ) P(Lk|δ), and
L* = arg mini [ ∑k≠i P(δ|Lk) ∑j βkj ] ….….. (II)

• Case 3. Any action is risky. Wrong actions are to be
maximally penalized while correct actions are to be
penalized with the uncertainty value of the expert at the
class level  ( 1 – βkj ):

λj(ai|Lk)           =    1 – βkj        if :    i = k
λj(ai|Lk)           =    1                if :    i ≠ k

then R(ai|δ) = (∑j (1 – βij)) P(Li|δ) + ∑k≠i (N) P(Lk|δ),
R(ai|δ) = (N) P(Li|δ) – ∑j βij P(Li|δ) + N ( 1 – P(Li|δ) ),
R(ai|δ) = N – ∑j βij P(Li|δ), and

L* = arg maxi  [ P(δ|Li) ∑j βij ] ………. (III)

Figure 2. β-weighted loss function Λ(ai|Lk) for case 2.

5. Experimentation

5.1. Fusion system architecture

Acoustic data is provided by the MULTEXT corpus
[1] which comprises a set of 20 kHz 16-bit sampled
records in 5 languages:  English, French, German, Italian
and Spanish. Data consists of read passages from the
EUROM1 corpus pronounced by 50 different speakers (5
males and 5 females per language). The mean duration of
each passage is 20.8 seconds. The global corpus is split
into three partitions for each language: the learning
corpus, the development corpus and the test corpus (2
speakers: 1 male and 1 female who do not belong to the
other corpora).

Figure 3.   Architecture of the fusion system.

The ALI system is based on three ALI experts and a
fusion module (Figure 3):

• Acoustics Expert : After an automatic vowel
detection, each vocalic segment is represented with a set
of 8 Mel-Frequency Cepstral Coefficients and 8 delta-
MFCC, augmented with the Energy and delta Energy of
the segment. This parameter vector is extended with the
underlying segment duration providing a 19-coefficient
vector. A cepstral subtraction performs both blind
removal of the channel effect and speaker normalisation.
For each recording sentence, the average MFCC vector is
computed and subtracted from each coefficient.

• Rhythm Expert : Syllable may be a first-rate
candidate for rhythm modelling. Nevertheless, segmenting
speech in syllables is typically a language specific
mechanism; then no language independent algorithm can
be derived. For this reason, we have introduced the notion
of pseudo-syllables derived from the most frequent
syllable structure in the world, namely the CV structure.
Using the vowel-no vowel segmentation, speech signal is
parsed in patterns matching the structure: .CnV. Each
pseudo-syllable is then characterised by its: consonant
global duration, vocalic duration, complexity (the number
of consonant segments), and energy.

• Fundamental Frequency Expert : The fundamental
frequency outlines are used to compute statistics within
the same pseudo-syllable frontiers (previously defined) to
model intonation on each pseudo-syllable. The parameters
used to characterize each pseudo-syllable intonation are a



measurement of the accent location (maximum f0 location
in regard to vocalic onset) and the normalized
fundamental frequency bandwidth on each syllable.

For each expert, we apply the same learning-testing
procedure: for each language, a Gaussian Mixture Model
(GMM) is trained using EM algorithm with LBG
initialisation [6]. The optimal number of components of
the mixture is obtained from experiments on the learning
part of the corpus. During the test, the decision relies on a
Maximum Likelihood procedure. The performance of
these three experts is given in Table 2, and is considered
as a reference to be compared with.

5.2. Tests and results

Three sets of  the test corpus (2 speakers out of 10: 1
male and 1 female) are selected on a round-robin basis
with a view to test over representative expert performance
data of good (set 1) and rather-bad examples (sets 2 and
3). Empirical and statistical fusion approaches are
experimented    to   merge    the    expert    decision
scores; for the GMM fusion, we use 20 Gaussian
components.

All of the fusion techniques are tested in their non-
weighted and weighted versions. The development corpus
is used to compute the class and expert performance
confidence indices whose information is used to drive in a
heuristic-like way the decision process for the weighted
fusion versions. Statistical fusion decisions, in their
weighted version, are made by applying risk-based rules II
and III; testing shows both rules deliver the same results.

Most important results in fusing the three experts are
shown in Table 2:

• The empirical fusion delivers higher identification
rates than those of any expert: up to 83%. Weighted
versions are better than non-weighted ones for set 1
(good-example data) only.

• Excepting the statistical fusion, all the other
approaches fail in set 2 (bad-example data).

• The weighted statistical fusion delivers the best
identification rates: up to 86%.

6. Conclusion

In the field of Automatic Language Identification, both
computation of performance confidence indices and
application of such indices to make recognition decisions
can be done formally by means of the Discriminant Factor
Analysis method and the Risk-based Bayes rule. This
methodology allows us to weight likelihood values at the
class level and appears as a strong alternative to empirical
techniques that do weighting at the expert level. That can
partially explain why statistical methods delivers better
identification rates than the empirical ones. A future direct

work, as result of weighted loss functions, could be to
explore uncertainty-based techniques such as the ones
coming from Possibility and Evidence Theories where we
could implement inference processes based on degrees of
possibility, compute possibility values of languages and
go back to the probability domain to make risk-based
decisions.

Table 2.  Comparison of fusion strategies.
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