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Abstract
Relying on uncertainty theories, a formal methodology to fuse automatic language
identification expert decisions is presented. Special attention is focused on repre-
senting and making use of a priori knowledge about the performance of experts: the
Discriminant Factor Analysis method is applied to compute performance confidence
indices at the class level. Experimentation results support the hypothesis that im-
plementing some uncertainty-based inference techniques issued from recent research
advances in Evidential or Possibility theories appears not only as a feasible fusion
alternative to empirical weighted techniques but also as the one which best exploits
the knowledge provided by such indices while delivering better language identification
rates.
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1. Introduction

In the field of Automatic Language Identification (ALI), experts are primary
systems, also known as sources of decision information, whose aim is to identify as
soon as possible the language in which an utterance has been pronounced. An ALI
system can be composed of several experts whose architecture allows them to take
advantage of language-discriminant specific features and characterises them as:
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– Acoustic Expert: vocalic and consonant phones and their frequency of occurrence
differ from language to language [12]; the acoustic information of each language is
modelled by Gaussian Mixture Models (GMM) or Hidden Markov Models (HMM)
[16];

– Phonotactic Expert: specific sequences of phonetic units appear at different oc-
currence rate in each language [16]; bi-gram or tri-gram models translate the
language phonotactic rules;

– Prosodic Expert: sound duration, fundamental frequency, intensity variation and
rhythm are language discriminant lineaments [14]; this expert is mostly based on
statistical moments computed on the rhythm and the fundamental frequency.
In taking into account the identification decisions issued from experts, an ALI

system faces the problem of merging (fusing) them in a suitable way. Till now several
merging techniques have been implemented and have evolved from the application of
empirical operators (average, addition, multiplication, consensus, and so forth) still
used not long ago, to nowadays estimations of confidence indicators [13] regarding
the performance of experts; this is applied as heuristics-like a priori knowledge by
weighting the expert decisions.

Both generation and application of confidence indices are carried out in an empir-
ical iterative way by testing and adjusting values with no clear formal background:
good performance is often obtained though [9]. So, great efforts have started to be
deployed to try to formally justify such techniques [4] [10]. We propose an original
method to fuse language identification expert decisions. It consists of developing a
formal methodology to:
– represent and compute confidence indices by extracting language-discriminant

information while processing a development corpus and using the Discriminant
Factor Analysis (DFA) method in the decision score field. The DFA projection is
used to obtain the confusion matrix and to provide expert and class performance
confidence indices.

– model the language identification process by means of the concept of a Linguistic
Variable, so that we can work on the scores in the domains of Possibility and
Evidence Theories, where respectively:
· we implement a hierarchical searching inference mechanism based on the class

confidence indices and apply an Adaptive Fusion [8] technique to compute the
possibility degree of each language;

· we assign basic belief mass values to the language occurrence events [5], weight
such event mass values [1] with the class confidence indices, apply Dempster’s
orthogonal rule to fuse them and derive the pignistic probability [15] of each
language.

Thus, in section 2 we present the methodology used to represent expert informa-
tion such as the collected expert decisions and the computed performance confidence
indices. In section 3 we describe the empirical weighted fusing techniques while the
uncertainty-based fusion models and methodologies are elaborated and depicted in
section 4. Experiments are explained in section 5.
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2. Information Representation

2.1. Expert Decisions are Scores

ALI experts accept a speech utterance called the observation, as input, and pro-
vide the class (or language) decision as output, after computing language-score
values; mostly a statistical model is used and the language score is the language
likelihood; so that the experts handle a vector of language-likelihood values. Given
M languages to identify, Li, 1≤i≤M , and N experts, sj , 1≤j≤N , we obtain for each
observation, N vectors of M values, each one ranging from 0 to 1; the higher the
value, the more confident the expert is that the corresponding language is the right
one. This global observation is represented as a score matrix: δ = [dij ]1≤i≤M,1≤j≤N

(Table 1), where L = {L1, L2, . . . , Li, . . . LM} is the set of languages and S =
{s1, s2, . . . sj , . . . , sN} is the set of experts.

Table 1
The matrix δ = [dij ]1≤i≤M,1≤j≤N , is composed of the scores corresponding to each observation.

L \ S s1 s2 . . . sj . . . sN

L1 d11 d12 . . . d1j . . . d1N

L2 d21 d22 . . . d2j . . . d2N

. . . . . . . . . . . . . . . . . . . . .

Li di1 di2 . . . dij . . . diN

. . . . . . . . . . . . . . . . . . . . .

LM dM1 dM2 . . . dMj . . . dMN

2.2. Computation of Confidence Indices

Estimation of expert performance, with a view to provide the language identifica-
tion process with heuristic-like information, can be achieved beforehand by means of
an evaluation phase where the expert is tested on a set of segments whose language
is known. We split a global speech corpus into three partitions: a learning corpus
X = {xlearn}, a test corpus Y = {ytest} and a development corpus Z = {zdev}.
We use the last one to compute the two families of indices: the performance expert
and class indices. In order to explain our future fusion techniques, it is necessary
to define not only such indices, but also the observation performance confidence
indices which represent for each expert the confidence of the decision made for
the observation . The two first families of indices are independent of the current
observation.

We collect the score matrices corresponding to the acoustic segments of the devel-
opment corpus; each expert sj , 1≤j≤N , contributes with a score vector corresponding
to an acoustic segment and is represented by column j, in the score matrix (Table
1). Then a matrix Mj (set of score vectors from expert sj) will correspond to several
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Fig. 1. Computing expert (α), class (β) and observation (γ) confidence indices.

acoustic segments. For each expert sj , we apply the DFA statistical method to its
matrix Mj in order to search for an appropriate representation space for them and
a way of obtaining performance confidence indices on a correct discrimination rate
basis: we use the M − 1 factorial axis corresponding to the M − 1 eigen-values and
project the set Mj of score vectors into this subspace. In building the corresponding
confusion matrix (Figure 1), the class confidence indices (βij ,1≤i≤M ) are directly
mapped from the diagonal values of it while the expert confidence index must be
computed as an averaged value:

αj =
1
M

∑
i∈[1,M ]

βij (1)

Many solutions may be proposed to define the observation confidence indices. We
retain two formulas to be applied to test-corpus matrices: given an identification
expert sj and î the decision class, dîj = maxk(dkj), k ∈ [1,M ],

γj = dîj −max
k 6=î

dkj (2)
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γj = dîj −
1

M − 1

∑
k 6=î

dkj (3)

3. Empirical Fusion

The most current operations to empirically fuse decision scores are the so called
linear and logarithmic ones that are respectively implemented by summing and
multiplying score values. In addition, the estimated performance of each expert can
be taken into account to weight its own scores in a heuristic-like way. The concept of
weighting by expert estimated performance [4] matches the one of weighting by the
expert confidence index α described above. Thus, a language is considered as the
identified one if it corresponds to the greatest value computed with the following
weighted rules:

Sum L∗ = arg max
i∈[1,M ]

[
∑

j∈[1,N ]

αjdij ] (4)

Product L∗ = arg max
i∈[1,M ]

[
∏

j∈[1,N ]

d
αj

ij ] (5)

4. Modelling under Uncertainty

Let Ψ be a linguistic variable that is represented by a triplet (Figure 2) [2]:

Ψ = (δ,RMxN , L) (6)

– δ is a simple variable representing the score matrix, corresponding to an acoustic
segment y, that is defined in the reference space RMxN ;

– R
MxN = {x|x = [dij ], 1 ≤ i ≤ M, 1 ≤ j ≤ N} is the set of all score matrix values

that δ can take;
– L = {L1, L2, . . . , Lm, . . . , LM} is a finite set composed of fuzzy sets Lm, that is

to say the set of different languages to be identified that characterise the variable
δ and define its value constraints in R

MxN .
Lm is an infinite fuzzy set that is defined a priori by a membership function that

associates to each element x ∈ R
MxN the degree µLm(x), within the range [0,1],

with which x belongs to Lm:

µLm : RMxN → [0, 1]; (7)

and can be denoted either in ordered-pair notation:

Lm = {(µLm(x), x);x ∈ R
MxN} (8)

= {(µLm
([dij ]), [dij ]); [dij ] ∈ R

MxN , 1 ≤ i ≤ M, 1 ≤ j ≤ N}, (9)
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Fig. 2. Automatic language identification is modelled as a linguistic variable concept.

or in additive continuous notation [2]:

Lm =
∫
x

µLm
(x)/x =

∫
[dij ]

µLm
([dij ])/[dij ]. (10)

Making an identification decision is figured out by means of fuzzy elementary
propositions such as “(score matrix) δ is (in language) Lm”. Such proposition is an
a posteriori description that vaguely describes the language employed to pronounce
an acoustic segment y, and it indicates the membership degree of the variable δ to
language Lm.

If for each language Lm we associate a possibility distribution to a fuzzy elemen-
tary proposition [2]:

∀x ∈ R
MxN , πδ,Lm(x) = µLm(x); (11)

then we will be able to make an identification decision after computing the pos-
sibility degree πδ,Lm

(x) to which δ belongs to each language Lm. This can be ac-
complished by means of directly applying uncertainty-based fusion techniques [8]
on the matrix score values of the variable δ.

Taking into account each score value dij in matrix δ is a language-likelihood
value, we can consider them as possibility values xij [5] [8] after normalising them:

xij = dij/ max
k∈[1,M ]

dkj ; (12)

so that we can compute πδ,Lm(x) for each language Lm by means of fusing all
possibility values in δ.

4.1. Possibility Theory

Before the fusion operation takes place, we exploit the a priori expert perfor-
mance information provided by the class confidence indices (βij ,1≤i≤M ,1≤j≤N ) to
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Fig. 3. Hierarchical adaptive fusion of expert decisions

implement a hierarchical tree (Figure 3) of experts with a view to fuse their scores
on a priority basis. The higher the performance of the experts at the class (lan-
guage) level, the first they appear in the hierarchical tree. Each node of the tree
comprises similarly-performing experts.

We apply the Adaptive Fusion [8] technique to fuse the score values issued from
the experts that are inside each node of the tree. This technique implies computing
the consistency index γ (a sort of observation confidence index) of the experts on
a score matrix basis:

γrk = supremumLm∈L[min(πδ,Lm(sr), πδ,Lm(sk))], (13)

so that conjunctive or disjunctive fusion can be done adaptively at the class level
for each node:

πδ,Lm(x) = max[πconjδ,Lm
(sr, sk)/γrk,min(1− γrk, πdisjδ,Lm

(sr, sk))]. (14)

The rules employed for conjunctive and disjunctive fusion are:

πconjδ,Lm
(sr, sk) = min(πδ,Lm

(sr), πδ,Lm
(sk)); (15)

πdisjδ,Lm
(sr, sk) = max(πδ,Lm(sr), πδ,Lm(sk)). (16)

Results from pairs of adjacent nodes are fused in an adaptive way as well. We start
the fusion process from the upper node and end up with the lower node so that a
global possibility value πδ,Lm

(x) is obtained as result. We compute the consistency
index γ and apply the adaptive rule the same way we explained above, but the
conjunctive and disjunctive rules [8] between nodes are respectively the following:

πconjδ,Lm
(x)

′,′′ = min[πδ,Lm(x)′,max(πδ,Lm(x)
′′
, 1− γ

′,′′)]; (17)

πdisjδ,Lm
(x)

′,′′ = max[πδ,Lm
(x)′,min(πδ,Lm

(x)
′′
, 1− γ

′,′′)]; (18)
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Having M languages Lm, we compute M global possibility distribution functions
πδ,Lm

(x) to make an identification decision by considering as the identified language
the one that has been assigned to the score-matrix variable δ with the maximum
possibility degree:

L∗ = arg max
m

[πδ,Lm
(x)]. (19)

4.2. Theory of Evidence

Let L = {L1, L2, . . . , Li, . . . , LM} denote the finite set of possible languages to
be identified; this set L is composed of M exhaustive and exclusive hypotheses of
the decision process and we assume every union of hypotheses may be a response
of the decision process. The set 2L of all possible events A based on L is the set of
all subsets of L, 2L = {A|A ⊆ L}, |2L| = 2M , that is to say:

2L = {∅, {L1}, . . . , {Lm}, . . . , {LM}, {L1, L2}, . . . , {LM−1, LM}, . . . , L}. (20)

For each unknown utterance, and for each expert sj , we define a basic belief mass
function m

sj

L , which explains how the decision L∗ belongs to the subset A of L:
m

sj

L : 2L → [0, 1] with the constraints:
∑

A⊆L m
sj

L (A) = 1 and m
sj

L (∅) = 0. The
basic belief mass function m

sj

L is built from the score matrix values of the utterance;
we assign basic belief mass values from the distances between their corresponding
possibility values [1] [5] [7]. Let Ak represent an event A in position k when all
the singleton events have been arranged in decreasing order taking into account
its corresponding possibility value πk. In the case of events that are different than
singletons, the corresponding possibility value is the minimum value found among
the several possibility values that correspond to the participating singletons [5]. If
π1 = 1 > π2 > . . . πk > . . . πM > πM+1 = 0; then m

sj

L (Ak) = 0 if Ak represents
∅; but for any non-empty set A, at least two mass-value assignment ways can be
considered:
– Case 1. Straightforward assignment [1] [5] [7]: m

sj

L (Ak) = πk − πk+1 ;
– Case 2. Level-cut assignment [7]: m

sj

L (Aij) =
∑

k=1,M (πk−πk+1)|Φk|−1
1Φk

(xij);
where Φk represents the level cuts (corresponding to the same values xij that
come out of the distribution functions πk) and 1Φk

(xij) = 1 if xij ≥ level-cut
threshold value, otherwise 1Φk

(xij) = 0.
In order to verify the constraints above, we normalise all the belief values after

computing a normalisation factor:

Rj = 1/
∑

Ak⊆L

m
sj

L (Ak); (21)

and we apply it as a multiplying factor:

m
sj

L (Ar) = Rjm
sj

L (Ak);∀Ar ⊆ L. (22)

Thus the set of focal elements includes all the subsets A such as its corresponding
m

sj

L (Ar) > 0.
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Fig. 4. Cascade-like application of Dempster’s orthogonal rule.

Fig. 5. Orthogonal combination of basic belief mass values of expert focal elements.

Let (sk, sr) represent any pair of the N experts, we may combine the belief mass
values of the focal elements (B, C, etc.) of these experts on a cascade-like pair basis
(Figure 4) by applying Dempster’s orthogonal combination rule:

m
sr,k

L (A) = KL.
∑

B∩C=A

msk

L (B).msr

L (C); (23)

where KL = 1/[1−
∑

B∩C=∅ msk

L (B).msr

L (C)] is a normalisation factor taking into
account the case where the empty set results from conjoining focal elements (Figure
5). We obtain thus a global belief mass function, noted mS

L(A), for each event A.
We weight basic belief mass functions [1] of the events (B, C, etc.) by discounting

the expert and class confidence indices (respectively α and β before normalising to
do the orthogonal operation:

m
sj ,βij

L (C) = βij .m
sj

L (C),∀C 6= L, |C| = 1; (24)

m
sj ,αj

L (C) = αj .m
sj

L (C),∀C 6= L, |C| > 1; (25)

m
sj ,αj

L (L) = (1− αj) + αj .m
sj

L (L). (26)

In order to make a language identification decision, we use the pignistic transfor-
mation [15] to derive a probability on L, from the belief mass values:
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Fig. 6. Architecture of the Fusion System.

BetP (Lm) =
∑

Lm∈A

mS
L(A)/|A|. (27)

Thus, the decision process can be carried out by maximum pignistic probability [6]:

L∗ = arg max
m

[BetP (Lm)]. (28)

5. Experimentation

5.1. Preliminaries

Acoustic data is provided by the MULTEXT corpus [3] which comprises a set
of 20 kHz 16-bit sampled records in 5 languages: English, French, German, Italian
and Spanish. Data consists of read passages from the EUROM1 corpus pronounced
by 50 different speakers (5 males and 5 females per language). The mean duration
of each passage is 20.8 seconds. The global corpus is split into three partitions for
each language: the learning corpus, the development corpus and the test corpus (2
speakers: 1 male and 1 female who do not belong to the other corpora).

The ALI system is based on three ALI experts and a fusion module (see Figure
6):
– Acoustics Expert [12]: After an automatic vowel detection, each vocalic segment

is represented with a set of 8 Mel-Frequency Cepstral Coefficients and 8 δ-MFCC,
augmented with the Energy and delta Energy of the segment. This parameter
vector is extended with the duration of the underlying segment providing a 19-
coefficient vector. A cepstral subtraction performs both blind removal of the
channel effect and speaker normalisation. For each recording sentence, the average
MFCC vector is computed and subtracted from each coefficient.

– Rhythm Expert [14]: Syllable may be a first-rate candidate for rhythm mod-
elling. Nevertheless, segmenting speech in syllables is typically a language-specific
mechanism and thus no language independent algorithm can be derived. For
this reason, we have introduced the notion of pseudo-syllables derived from the
most frequent syllable structure in the world, namely the CV structure. Using
the vowel-non vowel segmentation, speech signal is parsed in patterns matching



Uncertainty-based methods to fuse language identification expert decisions 11

the structure: .CnV. Each pseudo-syllable is then characterised by its consonant
global duration, its vocalic duration, its complexity (the number of consonant
segments), and its energy.

– Fundamental Frequency Expert [14]: The fundamental frequency outlines are
used to compute statistics within the same pseudo-syllable frontiers (previously
defined) in order to model intonation on each pseudo-syllable. The parameters
used to characterise each pseudo syllable intonation are a measurement of the ac-
cent location (maximum f0 location in regard to vocalic onset) and the normalised
fundamental frequency bandwidth on each syllable.
For each expert, we applied the same learning-testing procedure: for each lan-

guage, a Gaussian Mixture Model (GMM) is trained using EM algorithm with LBG
initialisation [11]. The optimal number of components of the mixture is obtained
from experiments on the learning part of the corpus. During the test, the decision
relies on a Maximum Likelihood procedure.

The performance of these three experts is given in Table 2, and is considered as
a reference to be compared with. We may observe the relatively bad performance
of: the fundamental frequency-based expert in general and the three experts on the
test set number two (see next section) in particular.

5.2. Tests

Three sets of the test corpus (2 speakers out of 10: 1 male and 1 female) are
selected and tested on a round-robin basis with a view to analyse the fusion system
behaviour over representative expert performance data of good (set 1) and rather-
bad examples (sets 2 and 3).

The three techniques of fusion (empirical, possibility-based and evidential ones)
are experimented to merge the decision scores (outputs of the three experts) as
explained in the previous sections.

The development corpus is used to compute the class and expert performance
confidence indices while the test corpus is used to compute the observation in-
dex. The information provided by these indices drive in a heuristic-like way the
uncertainty-based inference.

The empirical fusion techniques are tested in their non-weighted and weighted
versions. The expert confidence index is used for the weighted versions.

Minimum and maximum operations are selected and tested as conjunctive and
disjunctive possibility-based aggregation techniques; we use them while applying
the adaptive fusion technique explained above.

Regarding the evidential fusion techniques, the straightforward and level-cut
cases of mass-value assignment are tested. Two versions of focal element sets are
tested depending on what events can participate to compose them: I) any event
A⊆L is eligible; and II) any event A⊆L such that |A|=1 and the event A=L are
eligible.

Furthermore, 2-expert fusion is also tested to observe which combinations could
provide better results and how efficient the fusion techniques are in obtaining the
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best identification rates when combining 3 experts at a time.

5.3. Results

Most important results in fusing the three experts are the following (see Table
2):
– The empirical fusion delivers better identification rates than those of any expert

for sets 1 and 3 (up to 84%), but for set 2. Weighted versions work out better
than non-weighted versions for set 1 (good-example data) only.

– The possibility fusion generally attains a good identification-rate delivery level:
up to 85%. But it fails in set 2 (bad-example data).

– Excepting the evidential fusion (version II), all the others fail in set 2 (bad-
example data). The performance of evidential fusion version II is better than
version I for bad-example data (where the incoherence degree between experts is
too high: from 0.5 to 0.9).

– The best identification rates are reached by the fusion system using the eviden-
tial method with data from either the good-example set or the bad-example set
(version II only where the two cases of assignment provide similar performance):
up to 90%.

– Regarding the 2-expert fusion, we observe that two combinations barely deliver
better identification rates than the 3-expert combination for the empirical (ex-
perts 2 and 3, set 1: 85%) and possibility (experts 1 and 2, set 2: 65%) fusion
approaches. This scenario does not take place for the evidential fusion.

Table 2
Results of Fusion Strategies - Total Success Rate (%).

1st set 2nd set 3rd set

Reference Expert 1: acoustics 79 41 62

Experts Expert 2: rhythm 71 63 60

Expert 3: fundamental frequency 35 37 48

Empirical Addition 83 60 69

Fusion Product 67 49 68

Techniques Weighted Addition 84 58 67

Weighted Product 68 51 67

Possibility Theory 85 52 69

Uncertainty- Theory of Evidence

Based version I

Fusion - case 1 85 56 69

Methods - case 2 90 56 69

version II 90 64 75
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6. Conclusion

Uncertainty-based fusion methods can be applied properly to model the language
identification expert process of interaction in the presence of robust confidence
indices that reflect a priori knowledge on expert performance, like those computed
by the Discriminant Factor Analysis method. This fusion methodology comes out
as a formal strong alternative to empirical techniques.

Both Possibility and Evidence Theories provide us with inference techniques that
can take advantage of weighting values in a more refined way: not only at the expert
level but also at the class and observation levels, so that they will generally deliver
better identification rates compared to empirical techniques.

The evidence approach has been explored to a rather acceptable extent, so that
better results have been obtained if we compare it to the possibility approach. Nev-
ertheless, keeping in mind that an in-depth exploration goal of uncertainty-based
fusion methods is pursued, the latter cannot be discarded yet since there are sev-
eral unexplored aggregation techniques that could allow us to obtain a performance
analogous to that of Dempster’s orthogonal combination rule [8].

Thus, future works could include experimenting with: a) other conjunctive and
disjunctive operations in the possibility/fuzzy domain where there is a pool of t-
norm and t-conorm operators: probabilistic ones, Lukasiewicz, Hamacher, Weber,
etc.; and b) possibility-to-probability transformations [7] in search of a common
risk-based function to make fused decisions in the probabilistic domain (note that
the pignistic probability has already been computed from the evidential domain).
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